

This project has received funding from the European Union’s Horizon 2020 - Research and Innovation

Framework Programme, H2020 SU-FCT-2019, under grant agreement no 883341.

Global Response Against Child Exploitation

Instrument: Research and Innovation Action proposal

Thematic Priority: FCT-02-2019

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 2 of 48

Federated Learning Strategies

Deliverable number D5.3

Version: 1.1

Delivery date: May 2022

Dissemination level: PU

Classification level: Non classified

Status Final

Nature: Other

Main author(s): Athanasios Psaltis
Kassiani Zafeirouli

CERTH

Contributor(s): Stavroula Bourou,
Ioannis Kontopidis

SYN
VICOM

DOCUMENT CONTROL
Version Date Author(s) Change(s)

0.1 08/04/2022 Athanasios Psaltis, Cassie
Zafeirouli (CERTH)

TOC

0.2 03/05/2022 Cassie Zafeirouli Section 2 added

0.3 09/05/2022 Athanasios Psaltis Section 3 added

0.4 18/05/2022 Cassie Zafeirouli
Stavroula Bourou (SYN)
Ioannis Kontopidis (VICOM)

Partners Input

0.5 20/05/2022 Cassie Zafeirouli Section 4 added

0.6 30/05/2022 Athanasios Psaltis, Cassie
Zafeirouli

 1st version for SAB & peer review

0.7 06/06/2022 Salvatore Vicari (ENG) Peer review

0.8 07/06/2022 Athanasios Psaltis Integration of review suggestions

0.9 08/06/2022 Philip Engström Approved by SAB

1.0 09/06/2022 Athanasios Psaltis, Cassie
Zafeirouli

Final proof reading

1.1 15/03/2024 Peter Leskovsky Correcting the dissemination level to
PU

DISCLAIMER
Every effort has been made to ensure that all statements and information contained herein are accurate;
however, the Partners accept no liability for any error or omission in the same.

This document reflects only the view of its authors and the European Commission is not responsible for
any use that may be made of the information it contains.

© Copyright in this document remains vested in the Project Partners

No public dissemination of this deliverable should be carried out without the express view of the Security
Advisory Board.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 3 of 48

Table of Contents
Executive Summary ... 6

1. Introduction ... 7

1.1. Overview ... 7

1.2. Relation to other deliverables .. 7

1.3. Structure of the deliverable ... 8

2. Federated Learning Frameworks ... 10

2.1. General Requirements .. 11

2.2. PySyft .. 13

2.3. Tensoflow Federated (TFF) ... 15

2.4. NVIDIA Federated Learning Application Runtime Environment (NVFLARE) .. 15

3. Federated Learning Strategies ... 18

3.1. Data Partitioning ... 18

3.2. Strategies for Dealing with Federated Systems and Data .. 20

3.3. Optimization algorithms followed in GRACE .. 24

3.3.1. Federated stochastic gradient descent (FedSGD) ... 25

3.3.2. FedAvg ... 26

3.3.3. FedProx .. 27

3.3.4. FedOpt ... 27

4. Technical & Performance analysis ... 29

4.1 Experiments details .. 29

4.2 MLFlow in distributed learning scenarios .. 33

4.2.1 Deployment and Architecture .. 33

4.2.2 Usage Guidelines ... 34

4.3 Results ... 38

4.3.1 Image classification ... 38

4.3.2 Named entity recognition ... 44

5. Conclusion ... 47

5.1. Summary ... 47

5.2. Evaluation ... 47

5.3. Future work .. 47

ANNEX I - GLOSSARY AND ACRONYMS .. 48

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 4 of 48

Tables
Table 1: Relation to other deliverables – receives inputs from .. 8

Table 2: Relation to other deliverables – provides outputs to .. 8

Table 3: VM specifications ... 33

Table 4: MLFlow’s sub-services details .. 34

Table 5: Closer look at clients’ data distribution for medium (a =1) heterogeneity variation 40

Table 6: Closer look at clients’ data distribution for high (a =0.1) heterogeneity variation 42

Table 7: Number of training samples per client for different data partition strategies 45

Figures
Figure 1: The adopted Star-like topology. GRACE utilizes a centralized server (EUROPOL) to create and share

the global model, while several MS LEA nodes participate asynchronously in the training process. 10

Figure 2: Two examples of attribute distribution skew... 12

Figure 3: An example of non-overlapping attribute skew for image datasets, the left half of the image data is

stored on Client 1, while the right half of the image is on Client 2 ... 12

Figure 4: An illustrative example of label size imbalance with two clients and class_number = 2 using CIFAR10

as an example .. 12

Figure 5: An example of label preference skew. For the same input feature (a cat with glass), Client 1 may

label ’like’ while Client 2 may label ’dislike’ instead. .. 12

Figure 6: An example of temporal skew for webcam recordings in FL ... 13

Figure 7: An example of different features, different labels Non-IID. Client 1 and Client 2 may hold different

types of data (image and audio). ... 13

Figure 8: Syft ecosystem workflow .. 14

Figure 9: Architecture Overview of TensorFlow Federated (TFF) ... 15

Figure 10: NVIDIA Federated Learning Platform ... 16

Figure 11: High-level FL training workflow (left), Low-level FL training analysis withing NVFLARE (right) 17

Figure 12: Federated Learning schemes based on data distribution. ... 18

Figure 13: An example of Horizontally partitioned data: data frames are partitioned horizontally into rows,

each of which having the same features ... 20

Figure 14: An example of Vertically partitioned data: partition data frames into columns, with each column

holding the same feature. ... 20

Figure 15: The first branch denotes the studies to deal with high communication costs. The second one

represents the evolution of overcoming the challenge of statistical heterogeneity, while the third denotes

structural heterogeneity. In the same branch, different symbols represent different ways to tackle the issue.

 ... 21

Figure 16: Benchmark dataset: CIFAR10 dataset (an example of an IID type).. 30

Figure 17: Cifar10 real-world data partition among clients .. 31

Figure 18: An extreme highly heterogenous dataset partition. .. 31

Figure 19: Data flow diagram .. 32

Figure 20: MLFlow system architecture .. 33

Figure 21: Training parameters as displayed on the dashboard ... 36

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 5 of 48

Figure 22: Training and evaluation loss tracking during training using the MLFlow 37

Figure 23: MLFlow dashboard ... 38

Figure 24: Centralised learning performance .. 39

Figure 25: FeAvg learning curves for different α ... 39

Figure 26: FedAvg, FedProx, FedOpt learning curves for α = 0.1 .. 40

Figure 27: Participant 0 – Confusion matrix ... 41

Figure 28: Participant 1 – Confusion matrix ... 41

Figure 29: Data heterogeneity has affected the global performance compared with the centralized training

(acc = 0.8275) but is significantly better than the local trained model performance. 42

Figure 30: Participant 0 – Confusion matrix ... 43

Figure 31: Participant 1 – Confusion matrix ... 43

Figure 32: Data heterogeneity has affected the global performance compared with the centralized training

(acc = 0.8275) but is significantly better than the local trained model performance. 44

Figure 33: Centralise learning performance .. 45

Figure 34: Number of training samples per client for different data partition strategies 46

Figure 35: FedAvg F1 score curves for different data partition strategies .. 46

Figure 36: Local vs Global performance for two random clients .. 47

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 6 of 48

Executive Summary

This deliverable presents the results of Task 5.3 Federated Learning Strategies. Within this task a set of
criteria/requirements related to the Federated Learning paradigm have been defined, taking into account the
established network topology, type of participants, data distribution and privacy, and security needs as
reported in D5.1 and D5.4. In addition, the most functional and commonly used frameworks have been
investigated to identify their advantages and limitations concerning the project’s needs and requirements.
Furthermore, a tool for experimentation, reproducibility, deployment and a central model registry has been
integrated. Moreover, this task included a thorough study of the Federated Learning aggregation strategies
and more specifically the optimization algorithms that take place on both the server and client-side during the
training process. In this deliverable, we carry out a complete convergence analysis to evaluate some of the
broader aggregation strategies in the selected Federated Learning framework. This task also included the
hyper tuning of several parameters during the model exchange process, the local training as well as the
optimization algorithm. Validation tests have been also executed to evaluate multiple Federated Learning
strategies under different scenarios for different tasks using different modalities in both the IID and Non-IID
settings.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 7 of 48

1. Introduction

1.1. Overview

This deliverable is reporting the output of the Task 5.3 - Federated Learning Strategies that is described in the
Description of Action (DoA) as:

“The objective of T5.3 is to design, develop and implement the strategies of DL model building under the
Federated Learning paradigm, including the parameters of model exchange among nodes, local training,
model updates based upon secure aggregation and decision on the weighted average. Blending of
online/offline DL processing and adaptation of the existing lambda architecture are handled by this task, as
well as the selection of DL categories and algorithms, including supervised learning, semi-supervised and
unsupervised learning. The selection of technologies and processes for FL takes place in this task.”

The main objectives of this document are the following:

• To report and comprehensively describe general GRACE’s requirements related to the Federated
Learning paradigm focusing on the network topolopy, type of participants, data distribution and
privacy, security needs

• To investigate the available open-source Federated Learning frameworks and libraries to select the
more suitable one for the GRACE Federated Learning ecosystem

• To design and develop the GRACE FL system based on the selected framework

• To research, implement and evaluate multiple Federated Learning strategies under different
Federated Learning scenarios for different tasks.

Performance evaluation will be completed in the last task of WP5 Task 5.5 Federated Learning System Analysis,
which will include an overall assessment of the GRACE Federated Learning system.

1.2. Relation to other deliverables

This deliverable is related to the following other GRACE deliverables:

Receives inputs from:

Deliv. # Deliverable title How the two deliverables are related

D2.1, D2.2 Use Cases, Process and Data Flows
Refinement

D2.1 should be considered in order to design the
FL system that will accommodate the defined use
cases, processes and data flows.

D2.4, D2.5 User Requirements D2.4 should be considered to ensure that the
designed FL architecture and the proposed FL
strategies will satisfy the user requirements.

D2.10, D2.11 Technical Specifications and
Architecture

The architecture considered in D2.10 should be
considered in the GRACE FL ecosystem.

D2.14, D2.15 Security and auditing mechanisms
report

The mechanisms defined in D2.14 must be
integrated in the FL architecture in an efficient
but definitive way.

D5.1 Federated Learning Infrastructure The selected FL framework and the proposed FL

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 8 of 48

and processes strategies should be aligned with the GRACE FL
architecture and the system topology.

D5.2 Federated data annotation The design and development of the tools for
annotation of Federated data of D5.2 must be
taken into account to ensure that the
specifications are met.

D5.4 Secure data exchange mechanism The design and implementation of the Federated
Learning privacy-preserving mechanisms
described in D5.4 should be considered for the
development of the GRACE FL strategies and FL
ecosystem. The creation of D5.3 and D5.4 are
performed in parallel and in close collaboration.

Table 1: Relation to other deliverables – receives inputs from

Provides outputs to:

Deliv. # Deliverable title How the two deliverables are related

D5.5 Federated Learning system analysis The provided FL framework and the proposed FL
strategies will be used in the analysis of the
Federated Learning system.

WP3
deliverables

Data Acquisition and Handling The GRACE FL framework interacts with the
components of WP3, and specifically with the
Unified Data Lake that is on the premises of each
LEA and EUROPOL’s.

WP4
deliverables

visual, audio and text processing D5.3 will provide guidelines to WP4 tools, related
to the selected FL framework and the proposed FL
strategies.

WP8
deliverables

Pilots Definition, Preparation,
Planning, Execution and Evaluation

The FL framework and strategies described in D5.3
shall be integrated in the WP8 context.

WP9
deliverables

Social, Ethical, Legal and Data
Protection Framework

The requirements for the GRACE FL ecosystem are

prepared considering the ethical aspects,

coordinated with the business needs to have a

performant GRACE platform.

Table 2: Relation to other deliverables – provides outputs to

1.3. Structure of the deliverable

The document includes the following sections:

• Section 1: An overview of this document is provided, setting the objectives of the deliverable and
highlighting the dependencies among the current and other deliverables.

• Section 2: Reporting of the GRACE specific requirements and needs related to Federated Learning
paradigm and comprehensive description and evaluation of the existing Federated Learning
frameworks.

• Section 3: Analysis of multiple state-of-the-art Federated Learning algorithms including FedSGD,

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 9 of 48

FedAvg, FedProx, FedOpt methods.

• Section 4: Performance evaluation methodology description and results analysis for different
modalities and FL parameters.

• Section 5: Document summarization and future work discussion.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 10 of 48

2. Federated Learning Frameworks

Standard machine learning approaches require aggregating data from several edge devices, like mobiles, IoTs,
servers and centralizing them on one central datacenter or on a cloud for model training and evaluation. This
approach can achieve excellent results with respect to model’s performance but raises security concerns
related to privacy violation and personal data leakage and requires large software and hardware resources
due to transmission and storage of high-volume, high-velocity and high-variety data.

Federated Learning (FL) is a new era in AI that aims to handle the limitations of centralized ML, providing a
collaborative, fully decentralized ML approach by exploiting both distributed data and distributed resources
to build accurate, robust models in a privacy-preserving manner. Unlike centralized ML approaches that gather
distributed local data to a central datacenter, FL solution transfer only the local-trained models, without data
exchange, to a centrally located server to build the shared global model. FL inherently ensures privacy and
security as the data resides in owner’s premises and never accessed or processed by other parties.

Fig. 1 presents in more detail how FL works in practise, within the GRACE project, and how orchestrates the
ML training process between different entities, in our case EUROPOL and MS LEAs. GRACE’s FL architecture
follows a star-like topology, where every local node (MS LEAs’ devices) connects to a central device
(EUROPOL’s server) and establishes a one-to-one communication. Once the communication has been
established, the distributed training process starts. Firstly, the server distributes the initial version of the model
to each node for training on local data. This first version can either be randomly initialized or pre-trained on a
predefined dataset. Afterwards, the updated local model is sent back to the central server to be averaged with
other nodes’ updates, utilizing secure aggregation methods. In the final step, the updated global model is
forwarded to the local nodes for another round of training. The process is continuing until the global
aggregated model is fully trained and achieves the required performance (see D5.1).

Figure 1: The adopted Star-like topology. GRACE utilizes a centralized server (EUROPOL) to create and share the global model, while
several MS LEA nodes participate asynchronously in the training process.

FL solution provides the methodological framework to collaboratively train a single global ML model by only
sharing the parameters of the models separately trained on local nodes. Many open-source libraries and
frameworks have been developed to connect the FL principals with existing ML frameworks to enable the

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 11 of 48

implementation of FL – ML scenarios. These frameworks provide the basic fabric for the FL training process,
combined with advanced features including multiple learning algorithms, various security and privacy
mechanisms and different topologies. Since FL is a new concept, introduced in 2017 by Google1, the majority
of the existing FL frameworks are still under development. In the context of GRACE, the most functional and
commonly used frameworks have been investigated to identify their advantages and limitations with respect
to project’s needs and requirements.

2.1. General Requirements

Different FL frameworks provide different capabilities related to type of infrastructure topology, type of
clients, learning algorithms, and security mechanisms, covering different needs. GRACE has specific
requirements that should be taken into consideration for the selection of the most suitable FL framework.

As mentioned above and comprehensively described in D5.1, GRACE network architecture follows a start-like
topology for cross-silo FL, where, in this case, silos are the EUROPOL and few MS LEAs that each represent a
large repository of data. The main challenge in cross-silo FL is the heterogeneity of the data distribution among
parties. The private local databases are usually non-independently and identically distributed (non-IID) and
they may be different in size, and show differnet label and feature distributions. For example, different MS
LEAs can have very different investigation-related objects distribution depending on their country (e.g.,
different types of power sockets or cans/bottles). Global collaboration without considering individual private
data specifications could lead to low model performance and poor generalization. Therefore, the selected FL
framework should provide multiple FL learning algorithms to address the learning effectiveness under non-IID
data settings, while also supporting the development of custom algorithms to cover specific needs.

The main categories for non-IID data can be summarized as follows (see Figure 3 to Figure 7):

• Covariate shift: local nodes may store examples that have different statistical distributions compared
to other nodes.

• Prior probability shift: local nodes may store labels that have different statistical distributions
compared to other nodes. This can happen if datasets are regional and/or demographically
partitioned.

• Concept drift (same label, different features): local nodes may share the same labels but some of them
correspond to different features at different local nodes.

• Concept shift (same features, different labels): local nodes may share the same features but some of
them correspond to different labels at different local nodes.

• Unbalancedness: the amount of data available at the local nodes may vary significantly in size.

1 https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 12 of 48

Figure 2: Two examples of attribute distribution skew

Figure 3: An example of non-overlapping attribute skew for image datasets, the left half of the image data is stored on Client 1,
while the right half of the image is on Client 2

Figure 4: An illustrative example of label size imbalance with two clients and class_number = 2 using CIFAR10 as an example

Figure 5: An example of label preference skew. For the same input feature (a cat with glass), Client 1 may label ’like’ while Client 2
may label ’dislike’ instead.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 13 of 48

Figure 6: An example of temporal skew for webcam recordings in FL

Figure 7: An example of different features, different labels Non-IID. Client 1 and Client 2 may hold different types of data (image and
audio).

Another significant parameter that should be considered is the data protection and the alignment with the
GDPR regulation and restrictions2 during the FL process. The natural advantage of FL is the ability to reassure
data privacy because sensitive data are stored locally and only the model’s parameters are exchanged.
However, without any other privacy-preserving and security mechanism, sensitive information can leak from
local training parameters. GRACE handles very sensitive data related to child exploitation, which must not be
revealed, stolen or reconstructed, and therefore a holistic secure FL environment is developed, enhanced by
additional privacy and security solutions to mitigate any risk.

Most of the existing FL frameworks are not yet fully functional and fully developed, and they cannot support
large scale real-world distributed training scenarios. However, GRACE wants to exploit both the distributed
data and the distributed resources of multiple entities in a realistic context. Therefore, GRACE FL approach
will enable the establishment of a secure connection and communication channel between multiple external
clients, the usage of the distributed resources including both CPUs and GPUs and the development of a data
handling tool to unify clients’ management system to ease the training process.

In the next subsections, the FL frameworks that have been investigated in the context of GRACE project are
presented, to report their advantages and their limitations with respect to project’s requirements and needs.

2.2. PySyft

2 http://data.europa.eu/eli/reg/2016/679/oj

http://data.europa.eu/eli/reg/2016/679/oj

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 14 of 48

PySyft is an open-source numPy-based library, introduced by OpenMinded3, that enables secure and private
ML by extending frameworks like Pytorch and Tensorflow to adopt the FL principals in a transparent,
lightweight manner. PySyft is supported by ecosystems and command line tools such as PyGrid and HAGrid to
perform data science on data hosted in distributed resources.

PySyft library provides the basic functions and methods to perform FL, including aggregation algorithms and
privacy and security mechanisms. However, PySyft, as standalone tool, can only be used for proof-of-concept
FL scenarios by utilizing “virtual” nodes hosted in the same machine, and therefore it is not suitable for GRACE
FL approach. To make it possible to exploit PySyft for real-world FL scenarios, it should be combined with
PyGrid, a server for private data. PyGrid is designed to host private data in order to allow data scientists and
tools developers to exploit distributed data without being able to process or download them.

Fig. 8 describes in more detail the whole FL process utilizing the Syft ecosystem. Firstly, the data owner
(EUROPOL, MS LEAs) should deploy a domain node, a server to load the private data. Once the data have been
successfully loaded, a data scientist can request access to the domain to perform remote training leveraging
the existing data. The data owner can control how much a user can change and tinker with domain node by
adding permissions related to data requests, domain settings etc. After the local training is completed, the
model is sent back to data scientist to be aggregated with the other updated distributed models.

Figure 8: Syft ecosystem workflow

Although Syft is a framework that provides a secure environment for multiple entities to be connected and
train ML models collaboratively, it has some limitations that make it unsuitable for GRACE’s FL approach. A
main disadvantage is that Syft supports only data in NumPy format and does not allow data owners to load to
their domain other types of data. This is very restrictive for GRACE as it handles multiple types of data including
image, audio, and text. Moreover, at the time of writing, Syft does not support the usage of GPUs in distributed
machines and therefore the training of large models with extensive datasets will be time and resources
consuming.

3 Ziller, Alexander, et al. "Pysyft: A library for easy federated learning." Federated Learning Systems. Springer, Cham, 2021. 111-139.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 15 of 48

2.3. Tensoflow Federated (TFF)

TFF4 is a federated learning framework, which is extensively used for federated learning research by simulating
federated computations on realistic datasets. TFF offers two APIs, which are the federated learning and the
federated core. The federated learning API contains a set of high-level interfaces, while the federated core API
provides a low-level interface with the ability to customise federated methods. Fig. 9 presents the architecture
overview of TFF.

As aggregation mechanisms, the TTF implements FedAvg and Federated Stochastic Gradient Descent (FedSGD)
algorithms. Specifically, the FedAvg utilises three main aggregation operators:

• Sum, in which the clients’ values are summed and the results are published at the central server

• Mean, in which the weighted mean of clients’ values is calculated and the result are published at the
central server

• Differentially private, in which a Gaussian or Laplacian noise is computed based on the clients’ values
and it is added to the data. Then the results are published at the central server

Regarding the security and privacy aspects, a secure aggregation protocol can be built into TensorFlow
Federated, based on encryption properties from TF Encryption. Additionally, the TFF framework contains
TensorFlow privacy, a python library for applying privacy techniques on machine learning model training.

However, the TFF has some drawbacks. Firstly, this FL framework can only be used for simulation mode, which
means that it cannot run a real-life experiment or perform commercial-like analysis. Secondly, vertical and
hybrid data splitting is not supported. Lastly, TFF does not support homomorphic encryption nor multi-party
computation as privacy preserving mechanisms.

Figure 9: Architecture Overview of TensorFlow Federated (TFF)

2.4. NVIDIA Federated Learning Application Runtime
Environment (NVFLARE)

4 https://www.tensorflow.org/federated

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 16 of 48

NVFLARE5 is a domain-agnostic, open-source FL platform, developed by NVIDIA, used by researchers and data
scientists to adapt existing ML/DL workflow (Pytorch, Tensorflow) to a federated paradigm and enables
developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration.

As shown in Fig. 10, NVFLARE provides an extensive set of tools and features to build a custom FL ecosystem.
Extensible management tools enable secure provisioning using SSL certifications, orchestration through an
admin console, and monitoring of FL process with multiple visualization methods. Built-in workflow strategies
can be used for training and evaluation, combined with learning algorithms for model aggregation. Moreover,
NVFLARE provides privacy-preserving algorithms that guarantee the protection of sensitive information and
prevent reverse-engineering of ML models.

Figure 10: NVIDIA Federated Learning Platform

In more technical details, the purpose of provisioning in NVFLARE is to generate mutual-trusted system-wide
configurations for all participants, thus allowing them to join the FL process across different locations. The
configuration files usually include information related to network discoveries (domain names, IP address,
ports) and credentials for authentication (certificates of participants). The data scientists/tool developers,
referred as administrators in NVFLARE, who wants to collaboratively train a model, should create these files
to fit their own requirements, and distribute them to participants (EUROPOL, MS LEAs) to establish a secure
connection between them. Once the connection has been established the administrator is responsible for the
orchestration of the FL process, by starting, aborting, or restarting the distributed training, and more.

Fig. 11 presents the training workflow that GRACE follows within the NVFLARE environment, in high and low-
level analysis, with one Server (EUROPOL) assigning tasks to Clients (MS LEAs) and aggregating the produced
results. The Controller is a function that controls or coordinates the Workers to get a job done. The controller
runs on the FL server and Workers run on FL clients. The relationship between these components is shown in
the diagram below, where the server controller defines task assignments (local training, model evaluation)
that are broadcasted and executed on the client worker. The results of the client task execution are then
returned to the server for aggregation. Both task assignment and task result submission can be applied on
both the server and client side, together with filtering and including filters related to privacy and security
mechanisms.

5 https://developer.nvidia.com/flare

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 17 of 48

Figure 11: High-level FL training workflow (left), Low-level FL training analysis withing NVFLARE (right)

NVFLARE framework has been selected for the GRACE FL platform, since it covers all project’s requirements.
NVFLARE is a domain-agnostic ecosystem capable of handling any type of data and any type of ML/DL models.
It is suitable for large-scale real-world FL scenarios by providing advanced provisioning and orchestration tools
to set-up and coordinate an FL project in a user-friendly manner. It also supports GPU-based training on the
distributed machines for time-efficient training and evaluation of large models and datasets.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 18 of 48

3. Federated Learning Strategies

Since the term federated learning was initially introduced with an emphasis on mobile and edge device
applications, interest in applying FL to other applications has greatly increased, including some which might
involve only a small number of relatively reliable clients. GRACE project is a typical example of such application
where multiple organizations need to acquire knowledge through the analysis of their data, but cannot share
their data directly. In this case a group of LEAs collaborating to train an ML model based on the whole set of
their data.

3.1. Data Partitioning

Based on data distribution over the sample and feature spaces, Federated Learning Strategies (FLS) can be
typically categorized in horizontal, vertical, and hybrid schemes6. In short, Horizontal federated learning uses
datasets with the same feature space across all devices, Vertical federated learning uses different datasets of
different feature space to jointly train a global model, while Hybrid federated learning is a combination of the
first two (in terms of feature and sample distribution).

Figure 12: Federated Learning schemes based on data distribution.

Horizontal FL: In this scenario (Fig. 12A), the datasets of different parties have the same feature space but
little intersection on the sample space. This is a natural data partitioning especially for the cross-device setting,

6 Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent
Systems and Technology (TIST), 10(2), 1-19.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 19 of 48

where different users try to improve their model performance on the same task using FL. Also, the majority of
FL studies adopt horizontal partitioning (i.e. partitioning by example). Since the local data is in the same feature
space, the parties can train the local models using their local data with the same model architecture. The
global model can simply be updated by averaging all the local models. A basic and popular framework of
horizontal federated learning is FedAvg7. Partitioning by examples is usually relevant for cross-silo FL
approaches (e.g., GRACE FL architecture), when a single company cannot centralize their data due to legal
constraints, or when organizations with similar objectives want to collaboratively improve their models. An
example of horizontal partitioning is shown in Fig. 13.

Vertical FL: In this setup (Fig. 12B), the datasets of different parties have the same or similar sample space
but differ in the feature space. The majority of literature approaches that lay in this category usually adopt
entity alignment techniques8 to collect the overlapped samples of the parties. Then the overlapped data are
used to train the ML model using encryption methods. In a recent study, Cheng et al.9 propose a vertical
approach to enable parties to collaboratively train ML models, by utilizing privacy-preserving entity alignment
to find common users among two parties, whose gradients are used to jointly train the decision trees. It is
important to note that, cooperation among different companies usually can be treated as a situation of vertical
partition. An example of vertival partitioning is shown in Fig. 14.

Hybrid FL: The majority of the existing schemes are mainly covered by one of the above two categories,
however, the partition of data among specific parties may be a hybrid of horizontal partition and vertical
partition. In this case (Fig. 12C), more advanced concepts have been proposed to consider the challenging
scenarios in which data parties share only a partial overlap in the user space or the feature space, and leverage
existing traditional ML transfer learning techniques to build models collaboratively. Federated transfer
learning can be regarded as vertical federated learning adopting a pre-trained model that is trained on a similar
dataset for solving a different problem. Liu et al.10 propose a secure federated transfer learning system which
can learn a representation among the features of parties using common instances. However, the existing
formulation is limited to the case of 2 clients and cannot be applied to the GRACE project.

7 McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and statistics (pp. 1273-1282). PMLR.
8 Zhuang Yan, Li Guoliang, and Feng Jianhua. A survey on entity alignment of knowledge base.
Journal of Computer Research and Development, 1:165–192, 2016.
9 Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, and Qiang Yang. Secureboost: A
lossless federated learning framework. arXiv preprint arXiv:1901.08755, 2019.
10 Yang Liu, Tianjian Chen, and Qiang Yang. Secure federated transfer learning. arXiv preprint
arXiv:1812.03337, 2018.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 20 of 48

Figure 13: An example of Horizontally partitioned data: data frames are partitioned horizontally into rows, each of which having the
same features

Figure 14: An example of Vertically partitioned data: partition data frames into columns, with each column holding the same
feature.

3.2. Strategies for Dealing with Federated Systems and Data

Compared with distributed learning, federated learning has some unique attributes:(a) The communication of
federated learning is relatively slow and unstable. (b) Participants in federated learning have heterogeneous
devices, and different devices have different computing capabilities. (c) Federated learning pays more
attention to privacy and security. At present, most studies assume that the participants and the server are
trustworthy. However, in real life, they may be untrustworthy. In implementing federated learning, it is
necessary to consider how to optimize the federated learning algorithm to solve the existing practical
problems. In terms of optimization, the major issues currently faced by researchers are: high communication
cost, statistical and structural heterogeneity (Fig. 15).

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 21 of 48

Figure 15: The first branch denotes the studies to deal with high communication costs. The second one represents the evolution of
overcoming the challenge of statistical heterogeneity, while the third denotes structural heterogeneity. In the same branch,

different symbols represent different ways to tackle the issue.

Communication overhead is a key bottleneck to consider when developing methods for federated networks.
While it is beyond the scope of this deliverable to provide a self-contained review of communication-efficient
distributed learning methods, we point out several general directions, which can be roughly divided into (a)
local updating methods, and (b) compression schemes. To tackle large masses of data and make FL flexible
against the explosive increasing of datasets size, the reduction of the communication overhead should be a
top priority. Meanwhile, effective efforts have been made including the reduction of communication rounds
and the improvement of model upload speed, to further reduce the update time.

In a typical machine learning system, an optimization algorithm like Stochastic Gradient Descent (SGD) runs
on a large dataset partitioned homogeneously across servers in the cloud. Such highly iterative algorithms
require low-latency, high-throughput connections to the training data. But in the Federated Learning setting,
the data is distributed across several devices in a highly uneven fashion. Performing local updates and
communicating less frequently with the central server addresses the main core challenges: complying with
data locality constraints and considering the limited communication capabilities of edge device clients.

Several recent methods have been proposed to improve communication-efficiency. Communication between
server and clients is willing to be as little as possible to reduce upload time. This is achieved by allowing, in
distributed settings, for a variable number of local updates to be applied on each machine in parallel at each
communication round, thus making the amount of computation versus communication substantially more
flexible. These methods drastically improve performance in practice, and have been shown to achieve
significant speedups over traditional distributed approaches. In federated settings, optimization methods that
allow for flexible local updating and low client participation have become widely accepted.

The research of McMahan et al.7 is considered the pioneering work on FL to make communication more
efficient by increasing the calculated quantity of each client between each communication round. This method
is based on averaging local stochastic gradient descent (SGD) updates for the primary problem. They also
pointed out that increasing the parallelism, which means motivating more clients to join training on each

[9] [7] [10]

[2]

[14] [6] [8] [15] [11] [12] [13]

[17] [32] [26] [27] [30] [31] [33] [28] [29]

[23] [24] [22] [19] [20] [21][25] [18]

High communication cost Statistical heterogeneity Structural heterogeneity

Decrease model update time Modify local training time Fault Tolerance

Reduce communication rounds Focus on global model Resource Allocation

Compression schemes
Add extra data pre-

processing procedure

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 22 of 48

round, is effective. Inspired by the latter, Nishio and Yonetani11 built the FedCs framework to integrate the
available clients to the utmost extent in each training round to make it efficiently in practice. A maximum
mean discrepancy was inserted into the FL algorithm to enforce the local model to acquire more knowledge
from others in training devices, thus speeding up convergence12. Yurochkin et al.13 designed the Bayesian
Nonparametric FL framework, which is the state of the art since it can aggregate local models into a federated
model without extra parameters, thus avoiding unwanted communication rounds. The experiment shows that
they can obtain a satisfactory accuracy rating with only one communication round.

Even if the communication rounds are optimized, how to accelerate model update is a remained problem.
Initially, McMahan et al. proposed two strategies to reduce model-update time14. One is a structured update,
which means transmitting only part of the updated model by means of a low-rank model or in a random mask
way. Likewise, an end-to-end neural network is a kind of structured update mode which maps update
information into a lower-dimension space thus relieving the pressure of communication15. The other is
sketched update, which refers to making use of a compressed update model. Zhu and Jin16 optimized sparse
evolutionary training (SET) thus conveying only a piece of parameters to the server, which resembles the
sketched update.

Since in each round, each client manipulates fixed epochs, Jiang and Ying17 designed an adaptive method for
local training. The local training epochs are decided by the server according to training time and training loss,
thus it will reduce local training time when the loss is getting small. The above-mentioned algorithms are all
based on stochastic gradient descent (SGD), but this method could be inefficient if the function is anisotropic.
Therefore, Liu, Chen, Chen, and Zhang18 utilized momentum gradient descent to consider previous gradient
information in each local training epoch to accelerate convergence speed. These algorithms are not fully
suitable for all federal settings. Therefore, a more flexible communication-efficient method needs to be
explored for high efficiency demand in digital forencics.

While local updating methods can reduce the total number of communication rounds, model compression
schemes (e.g., sparsification, subsampling, and quantization) can significantly reduce the size of messages
communicated at each round. These methods have been extensively studied, both empirically and
theoretically, in previous literature for distributed training in datacenter environments. In federated
environments, the low participation of devices, non-iid local data, and local updating schemes pose novel
challenges to these model compression approaches. Several works have provided practical strategies in
federated settings, such as forcing the updating models to be sparse and low-rank; performing quantization
with structured random rotation19; using lossy compression and dropout to reduce server-to-device

11 Nishio, T., & Yonetani, R. (2019, May). Client selection for federated learning with heterogeneous resources in mobile edge. In ICC
2019-2019 IEEE international conference on communications (ICC) (pp. 1-7). IEEE.
12 Yao, X., Huang, C., & Sun, L. (2018, December). Two-stream federated learning: Reduce the communication costs. In 2018 IEEE
Visual Communications and Image Processing (VCIP) (pp. 1-4). IEEE.
13 Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K., Hoang, N., & Khazaeni, Y. (2019, May). Bayesian nonparametric federated
learning of neural networks. In International Conference on Machine Learning (pp. 7252-7261). PMLR.
14 Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2016). Federated learning: Strategies for improving
communication efficiency. arXiv preprint arXiv:1610.05492.
15 H. Li and T. Han, "An End-to-End Encrypted Neural Network for Gradient Updates Transmission in Federated Learning," 2019 Data
Compression Conference (DCC), 2019, pp. 589-589, doi: 10.1109/DCC.2019.00101.
16 Zhu, H., & Jin, Y. (2019). Multi-objective evolutionary federated learning. IEEE transactions on neural networks and learning
systems, 31(4), 1310-1322.
17 Jiang, P., & Ying, L. (2020, March). An optimal stopping approach for iterative training in federated learning. In 2020 54th Annual
Conference on Information Sciences and Systems (CISS) (pp. 1-6). IEEE.
18 Liu, W., Chen, L., Chen, Y., & Zhang, W. (2020). Accelerating federated learning via momentum gradient descent. IEEE Transactions
on Parallel and Distributed Systems, 31(8), 1754-1766.
19 Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2016). Federated learning: Strategies for improving
communication efficiency. arXiv preprint arXiv:1610.05492.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 23 of 48

communication20; applying Golomb lossless encoding21.

On the other hand, when dealing with system heterogeneity in federated networks, there is significant
variability in the characteristics of the system across the federation, as devices may differ in terms of hardware,
network connectivity, and battery power, thereby causing unbalanced training time. These systems
characteristics introduce issues such as stragglers, significantly more prevalent than in the typical centralized
case. Up to now, methods to deal with system heterogeneity mainly focus on resource allocation for
heterogeneous devices and fault tolerance for devices prone to being offline.

When learning over remote devices, fault tolerance becomes more critical as it is common for some
participating devices to drop out at some point before the completion of the given training iteration. To
address the issue of stragglers Smith et al.22 considered the influence of low participation in the training
process to resist device drop out. Another practical strategy is to simply ignore such device failure23, which
may introduce bias into the device sampling scheme if the failed devices have specific data characteristics. For
instance, devices from remote areas may be more likely to drop due to poor network connections and thus
the trained federated model will be biased towards devices with favorable network conditions. While several
recent works have investigated convergence guarantees of variants of federated learning methods, few
analyses allow for low participation or study directly the effect of dropped devices. To enable FL system to be
robust to dropped participants, scholars also designed a secure aggregation protocol24 which is tolerant
against arbitrary dropouts as long as surviving users are enough to join federate updates. Lib et al.25 take
stragglers into account and allow these devices to spend different locally update computation times. Wu et
al.26 also fully considered the device straggling phenomenon in a heterogeneous network. They made use of
a cache structure to store those unreliable user update thus alleviating their trustless impact on the global
model.

For the sake of resource constraint, most foregoing works devote to allocating resources properly to
heterogeneous devices. For instance, Kang et al.27 took overhead in heterogeneous clients into consideration
to motivate more high-quality devices to participate to the training process. In a similar way, Nishio and
Yonetani28 explore novel device sampling policies based on systems resources, where the server aims to
aggregate as many device updates as possible within a pre-defined time window. And Tran et al.29 studied
training accuracy and convergence time with the influence of heterogeneous power constraints. Meanwhile,

20Caldas, S., Konečny, J., McMahan, H. B., & Talwalkar, A. (2018). Expanding the reach of federated learning by reducing client
resource requirements. arXiv preprint arXiv:1812.07210.
21 Sattler, F., Wiedemann, S., Müller, K. R., & Samek, W. (2019). Robust and communication-efficient federated learning from non-iid
data. IEEE transactions on neural networks and learning systems, 31(9), 3400-3413.
22 Smith, V., Chiang, C. K., Sanjabi, M., & Talwalkar, A. S. (2017). Federated multi-task learning. Advances in neural information
processing systems, 30.
23 Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., ... & Roselander, J. (2019). Towards federated learning
at scale: System design. Proceedings of Machine Learning and Systems, 1, 374-388.
24 Hao, M., Li, H., Luo, X., Xu, G., Yang, H., & Liu, S. (2019). Efficient and privacy-enhanced federated learning for industrial artificial
intelligence. IEEE Transactions on Industrial Informatics, 16(10), 6532-6542.
25 Li, S., Cheng, Y., Liu, Y., Wang, W., & Chen, T. (2019). Abnormal client behavior detection in federated learning. arXiv preprint
arXiv:1910.09933.
26 Wu, W., He, L., Lin, W., Mao, R., Maple, C., & Jarvis, S. (2020). Safa: a semi-asynchronous protocol for fast federated learning with
low overhead. IEEE Transactions on Computers, 70(5), 655-668.
27 Kang, J., Xiong, Z., Niyato, D., Yu, H., Liang, Y. C., & Kim, D. I. (2019, August). Incentive design for efficient federated learning in
mobile networks: A contract theory approach. In 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS) (pp. 1-5).
IEEE.
28 Nishio, T., & Yonetani, R. (2019, May). Client selection for federated learning with heterogeneous resources in mobile edge. In ICC
2019-2019 IEEE international conference on communications (ICC) (pp. 1-7). IEEE.
29 Tran, N. H., Bao, W., Zomaya, A., Nguyen, M. N., & Hong, C. S. (2019, April). Federated learning over wireless networks: Optimization
model design and analysis. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1387-1395). IEEE.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 24 of 48

Chai et al.30 considered the impact of resources (e.g. CPU, memory, and network resources) heterogeneity on
the training time of FL. To address this issue, Li, T. et al.31 designed fairness metrics to measure loss in devices
and a q-Fair optimization goal to impel fair resource allocation in FL. While these methods primarily focus on
systems variability to perform active sampling, we note that it is also worth considering actively sampling a set
of small but sufficiently representative devices based on the underlying statistical structure.

Challenges arise when training federated models from data that is not identically distributed across devices,
both in terms of modelling the data, and in terms of analyzing the convergence behaviour of associated
training procedures. The traditional machine learning approach, implicitly or explicitly, assumes that the data
distribution is identically independent. This scenario is suitable for collecting all data and then training in a
distributed way. However, data is collected from various devices or institutions and thereby do not follow
Identically Independent Distribution (IID), thus training a single global model on the union of client datasets,
becomes harder with non-IID data. To tackle this problem, the general resolution is to focus on a global model,
modify the local training mode (e.g., through different hyperparameter choices), or add some extra procedure
to the data pre-processing stage.

The first proposed FedAvg algorithm resolves this issue by averaging local upgrades on each device directly. In
addition, Mohri et al.32 noticed that previous work ignore the importance of fairness which may lead to biased
centralized model. They improved the global model to cope with any target distribution comprised of a
mixture of different clients. As for the aggregation stage, convergence behaviour is another stressed issue.
The existence of heterogeneity may lead to the mis-convergence of the global model. Wang, X. et al.33
discussed the convergence bound of FL based on gradient-descent in Non-IID data background, and they
further enhanced an improved adaptive method to reduce loss function within constraints of resource budget.
Moreover, the authors34 gave four kinds of convergence theorems with different parameter settings or
premises for FedAvg in Non-IID situations. These studies partially fill the theoretical gap in the research on the
convergence speed of an FL algorithm. Besides, they provide the effect of parameter adjustment on the
convergence speed for guidance. To understand the performance of FedAvg in statistically heterogeneous
settings, FedProx35 has recently been proposed. FedProx makes a small modification to the FedAvg method to
help ensure convergence, both theoretically and in practice. FedProx can also be interpreted as a generalized,
re-parameterized version of FedAvg that has practical ramifications in the context of accounting for systems
heterogeneity across devices.

For data pre-processing, Huang, Shea et al.36 introduced clustering thought with FL and constructed a
community-based FL method. By separating independent data into different clusters, and then processing
federated training on each community, the non-IID problem is thus can be resolved. However, one drawback
is that it’s not suitable for massively data training due to high parameter conversion overhead. In a hierarchical
heterogeneous horizontal framework, the method projects each embedding submanifold into a common

30 Chai, Z., Fayyaz, H., Fayyaz, Z., Anwar, A., Zhou, Y., Baracaldo, N., ... & Cheng, Y. (2019). Towards taming the resource and data
heterogeneity in federated learning. In 2019 USENIX Conference on Operational Machine Learning (OpML 19) (pp. 19-21).
31 Li, T., Sanjabi, M., Beirami, A., & Smith, V. (2019). Fair resource allocation in federated learning. arXiv preprint arXiv:1905.10497.
32 Mohri, M., Sivek, G., & Suresh, A. T. (2019, May). Agnostic federated learning. In International Conference on Machine Learning
(pp. 4615-4625). PMLR.
33 Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., & Chen, M. (2019). In-edge ai: Intelligentizing mobile edge computing, caching and

communication by federated learning. IEEE Network, 33(5), 156-165.

34 Li, X., Huang, K., Yang, W., Wang, S., & Zhang, Z. (2019). On the convergence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189.
35 Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal
Processing Magazine, 37(3), 50-60.
36 Huang, L., Shea, A. L., Qian, H., Masurkar, A., Deng, H., & Liu, D. (2019). Patient clustering improves efficiency of federated machine
learning to predict mortality and hospital stay time using distributed electronic medical records. Journal of biomedical informatics,
99, 103291.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 25 of 48

embedding space to overcome data heterogeneity37.

For some applications, it may be possible to augment data in order to make the data across clients more
similar. One approach is to create a small dataset which can be shared globally. This dataset may originate
from a publicly available proxy data source, a separate dataset from the clients’ data which is not privacy
sensitive, or perhaps a distillation of the raw data. Another idea is to optimize modelling to achieve
personalization for individual devices such as MOCHA, which introduced multi-task learning to make utilization
of shared representationError! Bookmark not defined.. In a similar work38, the authors considered a solution to deal with n
on-iid data by sharing a small set of data among each local model. Huang, Yin et al.39 also gained a good deal
of enlightenment from the previous data sharing ideology to overcome the Non-IID problem. They put cross-
entropy loss into the transmission process and assign different local update times for each client in each round.

3.3. Optimization algorithms followed in GRACE

Optimization strategies and in particular aggregation algorithms play an important role in Federated Learning
as they are responsible for combining the knowledge from all devices/nodes without knowing about
users’/organization’s private data. Federated learning revolves around the Federated averaging algorithm
described in7 , called “FedAvg”. FedAvg is the very first vanilla FL algorithm formulated by Google for solving
distributed training problems. Since then, many variants of FedAvg algorithms have been proposed, such as
“FedProx”, “FedOpt”, etc, to address the main challenges of the domain. Looking in to the details of the FL
process, many optimization methods use local client updates, in which clients update their models multiple
times before communicating with the server. This can greatly reduce the amount of communication required
to train a model.

Within GRACE, three main aggregation mechanisms have been followed, examined in detail and applied to
specific scenarios, namely, the FedAvg, FedProx and FedOpt.

Optimization parameters: Once the topology of the node network is chosen, one can control different
parameters of the federated learning process to optimize learning: a) Number of federated learning rounds,
b) Total number of nodes used in the process, c) Fraction of nodes used at each iteration for each node, d)
Local batch size used at each learning iteration, e) Number of iterations for local training before pooling, f)
Local learning rate. These parameters have to be optimized depending on the constraints of the machine
learning application (e.g., available computing power, available memory, bandwidth).

Formally, FL is a communication-training protocol acting as per Algorithm 1 (defined in35). The framework
involves a group of devices named clients and a server coordinating the learning process. Each client has a
local training dataset which is never uploaded to the server. The goal is to train a global model by aggregating
the results of the local training clients. Algorithm 1 encodes the training procedure described below. There is
a fixed set of 𝐼 = {1, . . . , 𝑁 } clients (each with a local dataset), before every communication 𝑟𝑜𝑢𝑛𝑑 𝑡 ∈
 {0, 𝐸, . . . , (𝑇 − 1)𝐸} the server randomly selects a set 𝐼𝑡 of 𝐶 · 𝑁 clients. Parameters, fixed by server,
include: a set 𝐼 grouping 𝑁 clients, the ratio of clients 𝐶 selected at each round, the number of communication

rounds 𝑇 and a number of local epochs 𝐸. The server sends to the clients the current global algorithm state,
then it asks the clients to perform local computations based on the global state and their local dataset,
successively it requests the clients to send back an update; at the end, the server updates the weights of the
model by aggregating clients’ updates and the process repeats. The model is defined by its weights: at the

37 Gao, D., Ju, C., Wei, X., Liu, Y., Chen, T., & Yang, Q. (2019). Hierarchical Heterogeneous Horizontal Federated Learning for EEG.
38 Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., & Chandra, V. (2018). Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582.
39 Huang, L., Yin, Y., Fu, Z., Zhang, S., Deng, H., & Liu, D. (2020). LoAdaBoost: Loss-based AdaBoost federated machine learning with
reduced computational complexity on IID and non-IID intensive care data. Plos one, 15(4), e0230706.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 26 of 48

end of each epoch, 𝑤𝑡+1
𝑖 defines the weight of the client 𝑖 ∈ 𝐼. For each communication round, 𝑤𝑡 is the

global model detained by the server and 𝑤𝑇𝐸 is the final weight.

3.3.1. Federated stochastic gradient descent (FedSGD)

Deep learning training mainly relies on variants of stochastic gradient descent (SGD), where gradients are
computed on a random subset of the total dataset and then used to make one step of the gradient descent.
Stochastic gradient descent: is a drastic simplification of the gradient descent algorithm which computes the
gradient over an extremely small subset (mini-batch) of the whole dataset. In the simplest case, corresponding
to maximum stochasticity, one data sample is selected at random in each optimization step.

Let 𝐹 be the loss function, i.e., the difference between the true value of the objective function and the output

computed by the network. The back-propagation algorithm computes the partial derivative of 𝐹 concerning

each parameter 𝑤 and updates the parameter according to the gradient of 𝐹. 𝐹𝑖(𝑤) is the value of the loss

function at the i-th example.

 The update rule of stochastic gradient descent for a parameter 𝑤 is:

𝑤 ∶= 𝑤 − 𝑙𝑟∇𝐹𝑖(𝑤)

where 𝑙𝑟 is the learning rate and each loss function 𝐹𝑖 is typically associated with the i-th observation in the
dataset. We refer to one full iteration over all available input data as an epoch.

Federated stochastic gradient descent40 is the direct transposition of this algorithm to the federated setting,
but it uses a random fraction 𝐶 of the nodes and considers all the data on this node. The gradients are averaged
by the server proportionally to the number of training samples on each node and used to make a gradient
descent step. In particular, the selective SGD chooses a fraction of parameters to be updated at each iteration.
This selection can be completely random, but a smart strategy is to select those that have a larger gradient
∇𝐹𝑖(𝑤), according to a selection rate 𝜃.

40 Shokri, R., & Shmatikov, V. (2015, October). Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security (pp. 1310-1321).

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 27 of 48

3.3.2. FedAvg

Federated averaging (FedAvg) is a generalization of FedSGD, which allows local nodes to perform more than
one batch update on local data and it exchanges the updated weights rather than the gradients. The rationale
behind this generalization is that in FedSGD, if all local nodes start from the same initialization, averaging the
gradients is strictly equivalent to averaging the weights themselves. Further, averaging tuned weights coming
from the same initialization does not necessarily hurt the resulting averaged model's performance.

FedAvg can be viewed as a communication-light implementation of the standard FedSGD and it is currently
the most commonly used federated learning optimization algorithm. Unlike the conventional SGD, wherein
the updates at different clients are aggregated right after every local step, its essential idea is to compute the
gradients locally optimizing the local model on the local data, and updates are only aggregated on a centralised
device after every 𝑠 − 𝑡ℎ local step, where 𝑠 ≥ 1 is a small constant.

In particular, at each iteration, FedAvg first locally performs 𝑠 epochs of stochastic gradient descent (SGD) on
𝐾 devices—where 𝐾 is a small fraction of the total devices in the network. The devices then communicate
their model updates to a central server, where they are averaged. At each round of FedAvg, the aim is to
minimize the objective of the global model 𝑤 which is just the sum of the weighted average of the local device
loss.

The objective function is defined as follows:

where 𝑁 is the number of devices, 𝑝𝑘 ≥ 0, ∑ 𝑝𝑘 = 1𝑘 , and 𝐹𝑘 is the local objective function for the 𝑘th device.
The user-defined term 𝑝𝑘 specifies the relative impact of each device. The round starts with the random
selection of a subset of 𝑁 clients. Then the server broadcasts its global model 𝑤 to each client. In parallel, the
clients run SGD on their loss function 𝐹𝑘 and sent the resulting model 𝑤𝑘 to the server for aggregation. The
server then updates its global model as the average of these local models. The process is then repeated for 𝑛
such communications rounds.

The number of local epochs in FedAvg plays an important role in convergence. On one hand, performing more
local epochs allows for more local computation and potentially reduced communication, which can greatly
improve the overall convergence speed in communication-constrained networks. On the other hand, with
dissimilar (heterogeneous) local objectives 𝐹𝑘, a larger number of local epochs may lead each device towards
the optima of its local objective as opposed to the global objective—potentially hurting convergence or even
causing the method to diverge.

Setting the number of local epochs to be high may increase the risk that devices do not complete training
within a given communication round and must therefore drop out of the procedure

The FedAvg algorithm is a relatively basic federated optimization algorithm, while its deployment is relatively
simple, and its application field is vast.

3.3.3. FedProx

In practice, it is therefore important to find a way to set the local epochs to be high (to reduce communication)
while also allowing for robust convergence. We note that the optimal setting for the number of local epochs
is likely to change at each iteration and on each device—as a function of both the local data and available

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 28 of 48

systems resources. Indeed, a more natural approach than mandating a fixed number of local epochs is to allow
the epochs to vary according to the characteristics of the network and to carefully merge solutions by
accounting for this heterogeneity. FedProx is a generalization of FedAvg, which allows for variable amounts of
work to be performed locally across devices based on their available systems resources, and then aggregate
the partial solutions sent from the stragglers (as compared to dropping these devices). A proximal term is
proposed for the local subproblem to effectively limit the impact of variable local updates.

In particular, instead of just minimizing the local function 𝐹𝑘(·), device 𝑘 uses its local solver of choice to
approximately minimize the following objective ℎ𝑘:

The proposed proximal term addresses the issue of statistical heterogeneity by restricting the local updates to
be closer to the initial (global) model without any need to manually set the number of local epochs, while it
allows for safely incorporating variable amounts of local work resulting from systems heterogeneity. In
general, proximal terms such as the one above are a popular tool utilized throughout the optimization
literature. FedProx makes only lightweight modifications to FedAvg, this enables easy integration of FedProx
into existing packages/systems, such as the NVIDIA Flare that we have selected. We should also note that
FedAvg is a special case of FedProx with 𝜇 = 0.

3.3.4. FedOpt

One could also utilize optimizers other than SGD on the clients, or use an alternative update rule on the

server. This family of algorithms, which are referred 41to as 𝐹𝐸𝐷𝑂𝑃𝑇, is formalized in Algorithm 2. In

Algorithm 2, CLIENTOPT and SERVEROPT are gradient-based optimizers with learning rates 𝜂𝑙 and 𝜂

respectively. Intuitively, CLIENTOPT aims to minimize the same objective function as in FedAVG based on

each client’s local data, while SERVEROPT optimizes from a global perspective. FEDOPT naturally allows the

use of adaptive optimizers (eg. ADAM, YOGI, etc.), as well as techniques such as server-side momentum. In

its most general form, FEDOPT uses a CLIENTOPT whose updates can depend on globally aggregated statistics

(e.g. server updates in the previous iterations). FEDOPT also allows learning rates 𝜂 and 𝜂𝑙 to depend on the

round 𝑡 to encompass learning rate schedules. Worth noting that FEDOPT is already integrated into the IA

FLARE framework. By using adaptive methods, namely, by including ADAGRAD, ADAM, and YOGI, (which

generally require maintaining state) on the server and SGD on the clients, FEDOPT ensures the same

communication cost as FEDAVG while also working cross-device settings. It has been demonstrated that

adaptive optimizers can be powerful tools in improving the convergence of FL, a conclusion that we have also

drawn based on the experiments that we have conducted.

41 Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konečný, J., ... & McMahan, H. B. (2020). Adaptive federated optimization.
arXiv preprint arXiv:2003.00295.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 29 of 48

4. Technical & Performance analysis

Section 4 presents the technical analysis of the FL framework and reports the results and the performance
of the distributed trained models under different scenarios, using the NVFLARE ecosystem. Multiple
experiments are conducted in the context of image classification and named entity recognition, to
investigate how FL affects the whole training and evaluation process. The experiments highlight the impact
of different learning algorithms and data distribution variations on global model’s performance.

4.1 Experiments details

Image classification

Image classification aims to assign an input image one label from a predefined set of categories. The DL model
developed for this task is trained and evaluated on the Cifar-10 dataset42, both for FL and centralised learning.
Cifar-10 is one of the most widely used datasets for computer vision tasks that contains 60000 RGB images
in 10 different, diverse classes (see Fig. 16). We choose Cifar-10 for our experiments since the provided
images are low resolution (32x32) and therefore it is feasible to perform multiple FL scenarios to extract
valuable information related to different learning strategies. The DL model that is used is a CNN, which has 3
convolutional layers blocks, each consisting of two 3x3 layers and one max-pooling layer, followed by three
fully connected layers. This model is not the state-of-the-art on the CIFAR-10 dataset but is sufficient to show
the variation in performance for our investigation. Finally, the classification accuracy is used as the evaluation
metric.

42 Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of features from tiny images." (2009): 7.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 30 of 48

Figure 16: Benchmark dataset: CIFAR10 dataset (an example of an IID type)

For the centralised training, the whole dataset is centralised to a single node, where 50000 images are used

as training dataset and the remaining for testing. The performance of this model will be used as a benchmark

in a thorough evaluation against FL algorithms.

For the FL experiments, we start by analysing the different learning strategies from Section 3, assuming of
identically distributed data among participants. Next, we analyse the classification performance as a function
of non-identical data distribution, highlighting how proposed aggregation methods can improve performance
in these less identical cases.

CIFAR-10 is not an FL related dataset, since it has been built for traditional centralised learning algorithms.
Therefore, dataset partition required to make Cifar-10 suitable for FL application, utilising strategies, which
ensure that the data splits follow a close to real-world distribution. We follow the strategy described by
Wang43 to simulate both homogeneous and heterogeneous partitions. This approach is based on a Dirichlet
sampling algorithm, where a parameter α controls the amount of heterogeneity with respect to data size and
classes’ distribution. We use the original CIFAR-10 test set (10000 images) as the global test set for fair
comparison among different set ups.

43 Wang, Hongyi, et al. "Federated learning with matched averaging." arXiv preprint arXiv:2002.06440 (2020).

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 31 of 48

Figure 17: Cifar10 real-world data partition among clients

Figure 18: An extreme highly heterogenous dataset partition.

Now the question is how to prepare a non-iid/real-world dataset for the image classification task. One can
follow the steps indicated below:

1. Setting Hyper-parameters: classes_per_client, number_of_clients, batch_size,

2. Creating the distribution: download/acquisition of the original dataset, data splitting for training and
testing purposes (80/20, or 70/30 may be sufficient)

a) Data Transformation: data transformations and creation of a random distribution for the
clients, such that every client has an arbitrary number of images.

b) Splits the given images into n clients: creation of a split, which is further used to create the

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 32 of 48

real-world dataset

c) a similar split may be created for the non-IID dataset

d) Data Shuffling: shuffling the images of each client respectively

e) Data Loading: conversion of the split into a data loader (image augmentation is done in this
part) to be provided as an input to the model for training.

f) FL Training: datasets can be further used by federated learning to develop state of the art
models.

g) Baseline retraining: a set of images to be saved on the global server to retrain the client’s
model before aggregation. This technique of retraining all the models on the global server
deals with non-IID/real-world datasets.

Figure 19: Data flow diagram

Named entity recognition

Named Entity Recognition (NER) can be considered as subtasks of information extraction, aiming to classify
and locate entities listed in unstructured text data into predefined categories. The DL model is trained at
CoNLL-200344, a well-known open-source dataset for the task of NER. The CoNlLL-2003 dataset consists of
20745 sentences of 301415 labelled tokens among 9 classes. The dataset is split to training and test set,
containing 20345 and 400 sentences respectively.

For the task of NER, a Bidirectional Long Short-Term Memory (LSTM) is created. The model firstly contains
an embedding layer, then a bidirectional LSTM layer is added, while a fully connected layer transforms the
output of the LSTM. The total number of trained parameters of the NER model is 236809. The model is trained
using Adam stochastic gradient descent as an optimizer and sparse categorical cross-entropy loss function.
The F1 Score is used to evaluate the performance of the trained models under the FL set up.

Training and experiments are conducted both for FL and centralised learning. For the centralised training,
the training dataset is centralised to a single node. The performance of the NER model trained in a centralised
manner represents the benchmarking training and it is used as a baseline to compare the performance of the
next experiments.

The first experiment regards the training of the NER model in an FL environment of 10 clients in a
homogeneous way since the training dataset is equally split to each participant. For the second experiment,
the training dataset is split into 10 clients in an unequal way, representing a heterogeneous splitting.

44 Sang, Erik F., and Fien De Meulder. "Introduction to the CoNLL-2003 shared task: Language-independent named entity

recognition." arXiv preprint cs/0306050 (2003).

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 33 of 48

Specifically, the training set is split among clients in three different ways, which are mild, moderate and
intense.

4.2 MLFlow in distributed learning scenarios

4.2.1 Deployment and Architecture

MLFlow is an open-source platform for managing the machine learning lifecycle. In the GRACE project, our
goal is to integrate MLFlow within the distributed learning functionalities for experimentation, reproducibility,
deployment, and a central model registry. The MLFlow system architecture consists of the four main
components presented in the following image:

Figure 20: MLFlow system architecture

MLFlow is deployed on a separate Virtual Machine. The specifications of the system can be found in the table
below:

VM specifications

IP 10.41.41.211

RAM 2GB

CPU 1 core

Storage 1TB

Table 3: VM specifications

The service was deployed using Docker. The following tables contain important information about all MLFlow’s
sub-services.

MLFlow Server

Description Monitoring Web UI

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 34 of 48

URI http://10.41.41.211:5000

MinIO

Description Storage of the models as artifacts

URI http://10.41.41.211:9000

Username graceminio

Password gracepass

Postgres

Description Storage of the training hyperparameters and
evaluation data

Username gracepost

Password grace

Table 4: MLFlow’s sub-services details

The user interacts with the system through the MLFlow Server, using the URI found in the in the corresponding
table above. The port can be reached only from inside the GRACE network. Postgres and MinIO services work
in the background, interacting with the Web UI and the Model Registry respectively. More specifically,
Postgres is responsible for sending training data to the Web UI and MinIO for storing the resulted model at
the end of the training process. Apart from the Model Registry, where you can ingest, fetch and mark the
production stage of a model, the trained weights are also saved in a local folder within the VM named
“models”. This directory is mapped to the rest of the GRACE servers and it can be reached through the
following absolute path:

 /DATA/MLflow/models

The list with the trained models can also be found in the MinIO server, inside the directory named “models”,
by connecting to the URI and using the credentials mentioned earlier.

4.2.2 Usage Guidelines

For the remaining part of the section, we will present an example of the MLflow use, demonstrating the extra
lines of code that were added in the train and evaluation scripts of a Face Detection model. For integrating
mlflow to our Python code the following libraries must be imported:

• mlflow

• Mlflow.pyfunc

In the beginning of the training script the user needs to define a few environment variables that are
responsible for the connection with the MinIO and Web UI services. The user can define tags that can be
attached to a run. These tags are defined priorly within the Federated Learning configuration file and then
referenced within the training script. A name of the experiment where the run will be attached must also be
provided. If the name of this experiment does not exist, a new experiment with the defined name will be
created. The following code block summarizes the aforementioned information.

http://10.41.41.211:5000/
http://10.41.41.211:9000/

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 35 of 48

A neat use of the MLflow within the GRACE project is crucial, since the platform is intended to accommodate
a large number of models for various implementations, as well as different versions of each model. For this
reason, we recommend the following:

• Every new attempted run should carry the following tags:

➢ Organisation name

➢ Developer Name & Surname: (NSurname)

➢ Model name

➢ Model version

• Different experiments will correspond to different modalities of the project, such as face detection,
person detection, language identification etc. Thus, whenever a partner wants to create a run for a
model that corresponds to a specific modality is asked to define the name of the experiment
accordingly.

➢ Naming convention: partner_name-modality_name (vicomtech-face-detection)

• Different runs within each experiment will represent different model versions or training attempts of
the same modality, and should be named appropriately in a clear manner to avoid potential
confusions between the variants.

➢ Naming convention: task-model-version (training-iresnet50-1)

Having defined the URIs, tags and experiment name, the user must nest all the training code below
the command that starts the tracking of the run. Additionally, they need to ingest the tags they defined
earlier and specify the training parameters to be logged (see following code block).

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 36 of 48

The hyperparameters will be attached to the training run and will be displayed on the dashboard as shown in
Fig. 21 In this way, the user can easily identify the parameters of each training, when searching the history for
previous versions of the model.

Figure 21: Training parameters as displayed on the dashboard

Subsequently, loading the weights of the pre-trained model from the MLFlow Model Registry would require
the following lines of code. Before loading a model for training, it is important to have the model registered
via the MLFlow server.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 37 of 48

Keras and Pytorch offer pre-built functions (i.e. mlflow.keras.autolog()) for automatically logging the
training parameters without having to explicitly define them one by one. In the given example the training
parameters are taken from the training configuration file. Towards the end of the script and after the loss
metrics on the training and validation sets (or any other metrics) are calculated, the user needs to log them,
as in the example below.

The final step is to log the parameter run_ID, add an image of the network architecture (optional), save the
model as artifacts and include a text file named ”dataset_version.txt”. An example is provided in the
following code block.

The text file will contain important information, such as source & type, name (if any) and content category,
of the data that was used for the training. This file will be registered as artifact along with the model and will
assist in the quick identification of the correspondence between the training data and the model version.
The run_ID is a serial number that is uniquely assigned to each attempted run. Similar to the run ID, MLflow
also provides a unique experiment ID. Both these IDs will help the user to map a specific run with the
corresponding resulted model.

MLFlow offers practical features that assist the user to keep track of the training process. It is possible to
visualise tracking data in the form of a line-graph and monitor it in real-time. Below we see an example with
the training and validation losses taken from the Face Recognition modality, that we ingested earlier at the
end of each training step.

Figure 22: Training and evaluation loss tracking during training using the MLFlow

Once the training is completed, the evaluation metrics can be found on the MLFlow server. In this example
we assess the resulted model using a separate evaluation script. The metrics were calculated on the test set
and they are logged into the server.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 38 of 48

Finally, if the performance of the trained model is sufficient, the user has the option to register it with a tag,
indicating its phase/stage (i.e., staging, production, etc.). The following image shows how to insert a trained
model into the MLFlow Model Registry.

Then the user can access the ”Models” section of the dashboard and see all the registered models along with
some details regarding their phase, the current registered version and the date of the last modification (see
the following image).

Figure 23: MLFlow dashboard

4.3 Results

4.3.1 Image classification

Given the above Cifar-10 preparation, we present the performance of the learning algorithms reported in
Section 3 under a range of data distributions from identical to non-identical. The experiments are conducted
utilising NVFLARE’s virtual nodes in a single machine to reduce models’ transmitted time and thus training
time.

Central learning

The Cifar-10 dataset is located in a single node and the model is trained for 25 epochs. Fig. 24 reports the
classification accuracy of the centralised training model (acc = 0.8275).

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 39 of 48

Figure 24: Centralised learning performance

FedAvg Learning with non-identical participants

By running this experiment, we want to report the difference in the global model’s performance between
the central and the distributed training, utilising the FedAvg, the simplest aggregation method, for different
heterogeneity values. As mentioned above, the parameter α > 0 controls the identicalness among
participants. We tried different α values, where with α -> ∞, all participants have identical distributions and
α -> 0, each participant has examples from only one class.

The participants are 10 and the number of the local epochs and the communication/aggregation rounds is
also 10, since we want a similar number of iterations across participants as in the central baseline above. We
experiment with 4 values for α [1, 0.5, 0.3, 0.1] to generate populations that cover a spectrum of
identicalness.

Fig. 25 shows the classification performance as a function of the Dirichlet parameter α (smaller α creates less
identical data distributions). The test accuracy is close to central baseline for α = 1 and significantly drops for
lower α when participants have very diverse data distributions. This result indicates that the simple FedAvg
algorithm is not capable of handling non-identically distributed, highly heterogeneous datasets.

Figure 25: FeAvg learning curves for different α

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 40 of 48

Advanced Learning Strategies with non-identical participants

As presented above, more heterogeneous data splits require more advanced FL algorithms. We conducted
experiments utilizing FedProx and FedOpt learning strategies to investigate their impact on global model’s
performance and converge under high data distribution heterogeneity. Therefore, we set α to 0.1. The other
training parameters are the same as in the FedAvg learning experiment. Fig. 26 shows that FedProx achieves
similar performance to FedAvg while FedOpt outperforms FedAvg by a large margin with the same α setting
and the same number of training steps. FedOpt achieves that by utilizing Stochastic Gradient Descent
algorithm with momentum for global model update, as described in Section 3.

Figure 26: FedAvg, FedProx, FedOpt learning curves for α = 0.1

Utilizing the FedProx algorithm we conducted a set of experiments with multiple α values to highlight the
added value of the FL paradigm compared to the isolated trained models.

Table 5 shows the dataset distribution with medium heterogeneity by setting α = 1, for 2 random participants.
The participants have samples for most of the classes, with some classes only having few samples. Fig. 27
and 28 present the confusion matrices for participants 0 and 1, evaluating participants’ models that are
trained only with the local datasets (Table 5). As we can see both participants achieve acceptable
performance for most classes, except for sample deprived classes, like truck for participant 0 and airplane for
participant 1.

Class/

Participants

airplane automobile bird cat deer dog frog horse ship truck

0 1940 433 126 193 840 191 299 243 1284 0

1 22 733 86 786 494 508 876 154 535 209

Table 5: Closer look at clients’ data distribution for medium (a =1) heterogeneity variation

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 41 of 48

Figure 27: Participant 0 – Confusion matrix

Figure 28: Participant 1 – Confusion matrix

Fig. 29 shows the performance difference between the locally trained and globally aggregated model for

medium heterogeneity variation (α = 1). Although the local modes achieve high classification accuracy, the

aggregated model manages to surpass both of them.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 42 of 48

Figure 29: Data heterogeneity has affected the global performance compared with the centralized training (acc = 0.8275) but is
significantly better than the local trained model performance.

We repeat the previous experiments with higher level of data heterogeneity by seeting α = 0.1. As shown in

Table 6, participants tend to have significant number of samples from one or two classes and few or no

samples for the other classes. Fig. 30, 31 indicate that the locally trained models achieve very poor

performance for most of the classes and they tend to be biased, since visibly prefer predicting the classes

that they presented at training.

Class/Participants airplane automobile bird cat deer dog frog horse ship truck

0 0 814 212 3735 0 2737 0 0 0 0

1 46 291 0 4 0 0 0 0 401 123

Table 6: Closer look at clients’ data distribution for high (a =0.1) heterogeneity variation

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 43 of 48

Figure 30: Participant 0 – Confusion matrix

Figure 31: Participant 1 – Confusion matrix

As in the previous experiments we have the comparison between the locally trained and globally aggregated

model. As shown in Fig. 32 both local models achieve very low overall local classification accuracy close to

30 % and 50 % respectively. In contrast the global model achieves high accuracy, almost 70 %. The result

cleary highlights the added valued of the FL paradigm.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 44 of 48

Figure 32: Data heterogeneity has affected the global performance compared with the centralized training (acc = 0.8275) but is
significantly better than the local trained model performance.

4.3.2 Named entity recognition

In this subsection, we present the performance of different NER model trainings at the FL setup for different
splitting strategies. The experiments are conducted utilising NVFLARE’s virtual nodes in a single machine to
reduce models’ transmitted time and thus training time.

Central learning

In the centralized learning experiments, the dataset is located in a single node and the NER model is trained
for 10 epochs. Fig. 33 shows the F1 Score of the centralised training model. The target F1 metric is 85,57%.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 45 of 48

Figure 33: Centralise learning performance

FedAvg Learning with identical and non-identical participants

Initially, the training dataset is equally split among 10 participants, therefore each client contains 2034
training samples.

Afterwards, the training set is unequally split among clients. Specifically, it was split in three different ways,
which are mild (split #1), moderate (split #2) and intense (split #3). Table 7 presents the corresponding
training dataset of each client for the different splits.

Client

split

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Equal
split

2034 2034 2034 2034 2034 2034 2034 2034 2034 2034

split
#1

1999 2078 2077 1996 2034 1996 2067 2004 2118 1976

split
#2

1717 2267 2356 1689 2234 2167 1689 2195 2289 1742

split
#3

1035 3080 2075 1569 2895 809 898 3997 2459 1528

Table 7: Number of training samples per client for different data partition strategies

For a better understanding of the distribution of the training sets among clients, the Fig. 34 is given. It is

observed that the Split 1 contains almost the same number of training samples as in the case of equal

splitting, the split 2 slightly differs, while the split 3 greatly diverge from the original splitting.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 46 of 48

Figure 34: Number of training samples per client for different data partition strategies

Fig. 35 illustrates the F1 Score for the four different experiments, which regard the data splitting. In the case

of split 1, the F1 Score is close to the one achieved for the heterogeneous splitting. The performance of

federated models gets worse when clients have diverse data distributions. Therefore, it is observed that the

FedAvg algorithm is not capable of handling highly heterogeneous datasets, as it is also concluded in Section

4.3.1 (with Fig 25) .

Figure 35: FedAvg F1 score curves for different data partition strategies

Examining the behaviour of the federated model, which is trained at split 2 training dataset, we can compare

the overall F1 Metric values of the FL model, that arises from the Secure Aggregation, and the corresponding

values of each client. Indicatively, the Fig. 36 shows the performance of the global model as well as of client

1 and client 7 for each federated round. It is observed that the global FL model performs better than the local

models at each federated round.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 47 of 48

Figure 36: Local vs Global performance for two random clients

5. Conclusion

5.1. Summary

Within this task, we have designed, developed and evaluated a set of Federated Learning strategies under
different learning scenarios. We have extended the insightful analysis of Federated Learning frameworks
carried out on D5.1, providing requirements, definitions, architectures and training schemes for the
federated learning framework, while also providing a comprehensive survey of existing works on this
subject. We discuss how the federated learning framework can be applied to various existing datasets
successfully followed by a complete evaluation of state-of-the-art aggregation mechanisms. Further to this,
a tool for experimentation, reproducibility, deployment and a central model registry has been integrated.

5.2. Evaluation

The proposed aggregation mechanisms have been developed and carefully selected according to the
requirements . Preliminary results of the application of the proposed solution to the WP4 tools have been
demonstrated to the end-users third co-creation workshop of GRACE. NVIDIA Flare framework has been
selected for the GRACE system since it has been shown to cover the majority of the project’s requirements
related to FL topology, FL type of clients and FL training protocols.

5.3. Future work

Performance evaluation will be completed in the last task of WP5 Task 5.5 Federated Learning System Analysis,
which will include an overall assessment of the GRACE Federated Learning system. In addition, we aim to
further support the adaptation of WP4 tools to the Federated Learning setting, while also supporting all phases
of the pilot preparation and execution.

D5.3 Federated Learning Strategies

Grant Agreement: 883341 Dissemination level: PU Page 48 of 48

ANNEX I - GLOSSARY AND ACRONYMS

Term Definition / Description

AI Artificial Intelligence

CI/CD Continuous Integration\ Continuous Delivery

CVAT Computer Vision Annotation Tool

DL Deep Learning

DNN Deep Neural Networks

FL Federated Learning

GAN Generative Adversarial Networks

HPC High-Performance Computing

LEA(s) Law Enforcement Agency (s)

ML Machine Learning

MS/s Member State/s

NER Named Entity Recognition

NLP Natural Language Processing

PoC Proof of Concept

RL Reinforcement Learning

UI user interface

VM Virtual Machine

